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1 Introduction

Until recently, designers of parallel scientific programs have included little or no support for fault

tolerance in their applications. This attitude has been justified through the follows observations:
(i) the modest size of existing multiprocessor hardware platforms have made failures relatively
rare events, (ii) programming fault-tolerant applications has meant mastering complex distributed
computing concepts, (iil) the overhead for fault tolerance has been judged to be too high with
respect to desired performance.

With the advent of massively. parallel machines with tens of thousands of processors and com-
plex interconnection networks (e.g., the Connection Mzc.hine [201, the J-Machine [18]), application-
level fault tolerance support has to be reconsidered. In machines of this size, hardware-based fault
tolerance, such as those employed in the Tandem [71 and Stratus [35] systems, is clearly impractical.
* No matter how reliable the individual components are, the sheer size of these systems can result
in a significant probability of failure during lengthy compultations. If parallel applications that use
large numbers of processors are to make progress, they have to anticipate the possibility of partial
failures and take appropriate steps to recover from them. Unless this is done, reliability will become
the limiting factor in the parallelism that can be achieved by applications [29].

Shared-memory multiprocessors present severe architectural problems when scaled to very large
dimensions. It is widely accepted that constructing parallel machines that can scale to very large-
numbers of processors will be possible only for distributed-memory architectures. Physical prop-
erties of these machines will prevent relying on a global clock as a time base and par.i;al failures
will result in loss of communication or computation without bringing down the entire system. In
other words, the loose coupling that is dictated by size will render these mnachines equivalent to
"distributed systems in a box."

Extremely fast networking is yet another trend that supports this "distributed system" view
of parallel multiprocessors., With the possibility of Gigabits-per-second communication over large
geographic distances [21), an entire network of machines (parallel or scalar) can be thought of as
a parallel multiprocessor. Existing efforts in the United States linking distant supercomputing
centers across the country with high-speed communication lines support this observation. Even on
a more modest scale, there are many efforts to support parallel computing over netw-rks (Ethernet
LANs) of workstations [5, 81.

The realization that parallel multipmcessors are logically (or physically, as in the, caxe of
network-based computing) equivalent to distributed systems has two consequences. First, fault-
tolerant parallel computing in distributed memory multiprocessors has to be solved in the presence
of uncertainties that are inherent to distributed systems. Second, the wide body knowledge that has
been accumulated for fault-tolerant distributed computing can be directly applied to fault-tolerant
parallel computing.

The remainder of this paper is organized as follows; In the next section we present a brief
survey of the major paradigms for fault-tolerant distributed computing. Trarsactions, checkpoint.
ing, active replication and passive replication are examined and evaluated as possible mechanisms
for fault-tolerant parallel computing. Section 3 is a brief introduction to the ISIS distributed pro-
gramming toolkit that includes the necessary primitives for implementing a wide range of fault
tolerance mechanisms. Section 4 is an overview of the Paralex programming environment that
permits parallel applications to be developed and executed in distributed systems with automatic
support for fault tolerance. Usa of passive replication to render paralld programs fault tolerant in
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Paralex is discussed in Section 5. We conclude the paper by some observations derived from our
experience with Paralex.

2 Paradigms for Fault-Tolerant Distributed Computing

Failures in a system can result in the loss of data or computation. In this paper we will be addressing
only the possibility of tolerating faled computations. While maintaining data correct and available
is an equaily important concern, it is beyond the scope of this paper.

All other things being equal, a distributed application will be less reliable than its centralized
equivalent - there are simply more components that the distributed application depends upon and
each can fail independently. For distributed systems to be useful, they have to be fault tnleraznt.

Tolerating failures in any system require some form of redundancy. In time redundanc~y, the
failed computation is restarted on the same processor (once the cause of the failure has been elim-
ina•td) or on another processor and repeated until it completes successfully. In space redundancy,
the computation is carried out on several physically independent processors in parallel and a vote
is taken to extract a single output from the (potentially different) results.

It is clear, that space-redundant systems are more expensive in terms of computational resources.
In return, they are able to mask out failures and continue producing correct outputs with no loss in
performance1. This makes space-redundant systems suitable for time-critical applications such as
process control. Time-redundant systems, on the other hand, go through a recovery phase where
no useful computation is being carried out. They also require the ability to detect failures before
(incorrect) results are communicated externally. Parallel -scientific applications typically do not
have critical timing constraints to justify the cost of space redundancy. If, however, the parallelism
available in the hardware exceeds that. usable by the application, the extra processors may be put
to good use by running replicas of tae primary computation.

Achieving fault tolerance through redundancy in distributed systems requires that computa-
tions on different processors cooperate. The'lack of shared memory and the lack of a global clock
makes reasoning about such systems a difficult task. Since message excbange is the only means
of communication and it incurs random delays, it is impossible for any one component to have an
instantaneous view of tie global computation, state. The possibility of processor and communica-
tion failures further increases the level of uncertainty in these systems and adds to their conceptual
difficulty. We can hope to master fault-tolerant distributed computing only through the use of
appropriate paradigms that abstract away many of these complexities (30, '161. In the following
sections we present some of these paradigms.

2.1 Transactions

Transactions were originally proposed as a software structuring mechanism for' applications that
accessed shared data on secondary storage (typically a database)[19J. In this model, computations
are divided into units of work called transactione. The system guarantees three properties for
transactions: atomicity, serializability and permanence. Atomicity is with respect to failures in the
sense that the execution of a transaction is "all or nothing" - 1ailures never leave intermediate
states of a transaction visible to other transactions. Serializability, on the other hand, requires that

'A we~ mg all on, thenism a Alght. degradation in peiformeasc des to dhe dimemisaasfts of inputs to' the Msphicas
ad 4d0 to the voting &t the output.
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the effect of concurrent execution of several transitions be equivalent to some serial execution (one
after the other in some arbitrary order). Permanence guarantees that computations make progress
despite failures since their results will never be undone.

Programming with transactions presents to the user an idealized world where failures and other
concurrent transactiins have been abstracted away. The system automatically restarts transactions
if a failure interrupts their execution part way or if serializability c.nnot be guaranteed. Once a
transaction commits, it can be sure that the data values written are as if it executed in isolation
and without any failures. Thus, transactions transform the system from one consistent state to
another. By definition, transar.ion boundaries always define consistent system states from which
a computation can recover. The basic transaction model has been extended to distributed sys-
tems [26].

One of the drawbacks of the transactional model is that fault tolerance cannot be integrated
transparently to applications. Programs must explictly use the transaction paradigm by announc-
ing the beginning and end of transactions within programs at opportune points. Furthermore,
while the serializability requiremeut may be appropriate for database applications, it can be overly
restrictive for parallel computations that do not access shared files. The overhead introduced by
the complex mechanisms that implement the transaction abstraction may be significant for most
parallel applications.

Modern systems that, adopt the transaction model as the basis for fault-tolerant distributed.
computing include Arjuna [32], Argus [27] and Camelot (33].

2.2 Checkpoin+ing

An arbitrary distributed computation could be made fault tolerant without having to structure it
as a collection of transactions. All that is required is' a mechanism whereby computations can be
restarted from some past state in response to failures. To prevent having to restart computations
always from th& very beginning, and thus gUarantee forward progress, the state of the failure-free
execution is periodically saved to stable storage'. The saved past states are called checkpoints.
Restoring the system ,to a set of checkpoints and repeating the lost computations is called recovery.
The frequency with which checkpoints are taken is a system tuning parameter and establishes the
relative costs of the failure-free execution overhead and recovery delays.

In a system where computations interact by~exchanging messages, recovery of a failed compu-
tation from an arbitrary set of checkpoints may result in an inconsistent global system state (14].
Intuitively, recovery should never be attempted from a system state in which some computation
appears to have received messages that have not yet been sent. The manner in which global system
state ,consistency is guaranteed results in two distinct strategies.

2.2.1 Optimistic Recovery

The general strategy is to design algorithms with the guess that failures will not occur at inoppor-
tune times. As a recovery strategy, this leads to establishing checkpoints without any coordination
among the components. However, the system must have collected sufficient information along the
way so that exactly those computations that have to recover do so in case failures occur. For

2 5ttbjj storae is a memory device whose contents survive all falures short of disasters. It is typically implemented

a"mirrored diks.
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example, in the scheme proposed by Strom and Yemini (341, checkpointing and message logging
occur concurrently with computation and cotamunication. Causality information is maintained
such that recovery will occur from a consister~t global system state. In a variant of the scheme,
messages are logged in the nonvolatile memory of the sender rather than the receiver, resulting in
even further concurrency of stable storage writes with respect to computations (221. An unfortunate
consequence of optimistic strategies is that recovery time is difficult to bound since, in addition to
the failed computation, an arbitrary number of others may need to recover.

2.2.2 Conservative Recovery

A reasonable alternative to the above strategy is to structure the checkpointing mechanism in
a manner such that the set of latest checkpoints is always guaranteed to represent a consistent
system state. To prevent computations from having to recover arbitrarily past states, conservative
schemes synchronize checkpointing with computation and communicationý This has the desirable
consequence that recovery is both simple and more predictable in the delays it introduces to the
system. The cost, obviously, is shifted from recovery to checkpninting.

One way to guarantee consistency of checkpoints is to force each comitutation to record its state
after every message send operation nd before doing anything else. Recovery consists of the failed.
computation rolling back to its most recent checkpoint. This simple mechanism can be extended to,
cope with missing messages. Unfortunately, this naive solution is impractical since checkpointing
to. a stable store after' every send will introduce significant delays to the computation. We return
to this issue in Section 2.4 where we discuss passive replication.

Consistency of checkpoints can be guarantted even when they are taken much less frequently.
Koo and Toueg present a distributed algorithm that guarantees the set of most recent checkpoints to
always represent a consistent state [23). A unilateral checkpoint action forces the minimum number
of additional computations to checkpoint'along with it. Rcuove.y also involves the minimum number
of computations that are affected by the failure.

2.3 Active Replication

Given that a distributed system contains multiple processing elements with independent failure
modes, a distributed service can 'be made more reliable by performing it in parallel on several
processors. This simple idea contains numerous subtleties that have to be addressed before it. can
be made effective.

If a collection of replicas is to be functionally 'equivalent to a iingle component, it must accept
the same input and produce' the same output. Clients of the replicated service continue to interact
with it as if it wers implemented as auingle component. On the client side, code fragments intercept'
the ciient request and distribute it to the replicas. On the service side, code fragments intercept
an incoming request and engage in communication with all of the replicas of the service to achieve
the input dissemination'., F"ally, the outputs must be coalesced in to a single value. All of thio
code to wrap around clients and services can be generated automatically using technology similar
to Remote Procedure Call (RPC) stub generation [12].

We begin with the problem of coalescing the output. If only benign failures3 are to be tolerated,
then the first output to be produced by some replica can be taken as the component output. To

3BenWP f•ais cam composeato to amply stp ad produce so outpet.



tolerate up to k such failures, it clearly suffices to have k + 1 replicas. If failures can cause incorrec:
results to be produced by the replicas4, then a majority vote wi1 determine the output. This clearly
requires 2k + 1 replicas to tolerate up to k failures. It also requires a (reliable) component to act
as the voter.

Distributing the input to the replicas is even more subtle. For the above voting scheme to
work, all correct replicas must produce the same output. Th-:i requires that they all see the same
irput and that the computations they perform be deterministic. The input must be disseminated
such that either all or none of the replicas see it. Protocols that achieve this in the presence of
failures are called reliable broadcast protocols [15, 3). If the service interacts with multiple clients,
the replicas must not only see the same input, but also see them in the same order. Achieving
this in the presence of failures requires the use of an atomic broadcast protocol [17]. Depending
on the failure assumptions and the system model, achieving atomic broadcast may require 3k + 1
replicas to tolerate up to k failures (25]. Thus, this may be the dominant factor in determining the
replication level rather than simple majority.

The above ideas have been expornded in a general methodology called the state machine
approach for automatically adding fault tolerance to distributed services (31]. It is important
to note that while active replication can result in higher reliability of service3 in the short run,
these systenus become lesa reliable than their non-replicated counterparts in the long run (2, 36].
To mai'ttain reliability levels suIBidendly high over long intervals, it must be possible to vary the
number of replicas dynamaically - failed ones must be removed off line and new or repaired ones
brought on line. The difficulty in achieving this is maintaining a consisient view of the replica set
among the processors. This in turn requires a solution to the group membership problem (281.

2.4 Passive Replication

While active replication is able to mask failures without any recovery delays, it is costly - all of the
replicas compute actively consuming resources. Unless the system has an abuDdance of processors,
the approach may not be practical. Pasive replication offers a more economical alternative. The
service is replicated just as before, however, only one of the replicas computes while the others
remain dormant. If the initial computation reaches completion, no further action is necessary. If
a failure prevents the first replica from completing, one of the dormant copies is activated and
resumes computing from where it last left off. Thus, in the failure-free scenario, no computation is
wasteds.

Several observations are in order. First, the technique is effective only against benign failures
- it is not possible to detect incorrect results. Second, there must be a failure detector so that a
passive replica may be started if the initial computation fails. Third, input to the replicas must be
disseminated atomically just as in active replication. Finally, the technique incurs a delay while the
newly-activated replica "catches up* with the failed computation by processing its input queue.

By far the most common, realization of passive replication involves twe copies, one known as
the primary and the other as the secondary backup 17, 131. In this scheme, each communication
step requires atomically delivering the message to three destinations: the secondary of the sender
and the two copies of the destination. When a secondary takes over upon the failure of the primary,
it recovers by processing the messages in its input queue. Having seen the messages sent by the

'Then types of failure. &m sometime ca&Hed malicwut or Bpantino.
'There is a smal overhead is keeping the repicas coordinated as discersed lawe.
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primary before it failed serves to prevent the secondary from resending them during recovery. Only
when the secondarv has reached the state of the primary before it failed, does it engage in active
message sending.

While at first sight the primary-secondary replication scheme may seem very different from
checkpointing, the two are actiially logically equivaleat. Consider the checkpointing scheme with
conservative recovery where the computation is checkpointed after every send operation. If these
synchronous operations are to occur to stable storage, the delays would be intolerable. Rather than
representing a checkpoint as a process memory image on disk, we could choose to represent it as a
process state on another processor (the secondary) along with a count of sent messages. Replaying
the enqueued input messages %t the secondary and discarding a number of output messages equal
to the primary count effectively restores the secondary state to that of the primary at the point
of the last send before the failure. The technique trades off delays in checkpoiuting (an atomin
three-way multicait rather than a write to stable store.) with those o& recovery (computation rather
than restoring the state from stable store). Given that failures a relatively rare in most systems,
the approach is very reasonable.

3 The ISIS Distributed Programming Toolkit

From the above discussion, a relatively small number of abstractions have emerged as being nec-
essary for implementing a wide r?nge of fault tolerance paradigms. Furthermore, we have seen
that replication plays a fundamental role in achieving fault tolerance. The ISIS toolkit has been
designed to facilitate easy construction of efficient distributed programs and to make them fault
tolerant (9, 11i.

As we discussed in Section 2, the principal difficulty in reasoning about distributed systems is
the uncertainty duo to communication and failures. Without the appropriate tools, a programmer
has to consider an extremely large number of possible executions when developing applications. For
example, a message broadcast to a group of processes by simple send operations may be received
by some and not received by others. Two concurrent broadcasts to the same set of processes may
be received in a different order by some of the members. Events corresponding to processes joining
or leaving (either voluntarily or due to a failure) a computation may be perceived by the members,
in different order with respect to ongoing communication. The ISIS toolkit tries to put order to
this complex world. By using the appropriate communication primitives and reiying on lower-level
support, many of the events in a distributed system can be made to appear as if thc. occurred
at the same instant in all components of a computation. The resulting system, called virtually
synchronou, offers tremendous intelleftual economy to application developers [10).

ISIS runs on 4 large numbers of systems and extends the basic operating system primitives
with the foUowing abstractionf&:

Proce" Groups These rme the principal structuring constructs for ISIS applications. A process
group is a named collection of processes. Process groups may overlap in arbitrary ways
to reflect the natural structure of the application. Group membership is dynamic in that
processes may join or leave at will. A built-iu failure detectot turns failures into group
departures of the appropriate processes. The group name may, be used to address all current
members without having to know their individual identities. Ther ar no restrictions on the
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computaticn being carried out by the members $ a group - they need not be replicas of the
same computation.

Group Communication Applications in ISIS./ae structured as communicating process, groups.
Adl data exchanged between groups yare coded as ISIS messages, p.-ovid~ing a uniform repre-
sentation across heterogeneous archit ktures. ISIS protocols ensure that if a message broad-
cast to a group is received by one o its members, it is received by all of its members, despite
benign processor and communicawon failures. With respect to ordering, ISIS provides three
alternatives:

FIFO Broadcast Only b.oadcasts originat~ng from the same source are received in the same
order by the proce 3 group members.

Causal Broadcast 'Jnly broadcasts that are causally related are received in the same order.
Two broadc4s are said to be caually related if there exists a chain 'of communication
events sucl chat one can affect the contents oi the other [24]. Unrelated broadcasts ma~y
be orderx arbitrarily. ISIS maintains the causality relation even across process group
bound.ies.

Atom/Broadcast All broadcasts to the group are received in the same order by all of its
/thembers. This is true even for broadcasts that are causally unrelated. While the cost "

of FIFO and Causal broadcasts are comparable, Atomic broadcast incurs a quantitative
increase in time delays.

State Transfer To facilitate coordination among group members, ISIS provides a mechanism
whereby the state of one member is copied to another. What constitutes the process state is
application dependent and is specified by the programmer. State transfers are typically used
to initialize the state of a new process joining a group. As' with the join event itself, the state
transfer is ordered cousistently by ,.U group members with respect to communication events.

Given the above abstractions, it is posible to implement almost all of the paradigms of Sec-
tion 2. The lack of relevant concepts such as serializability and atomic commitment make transac-
tions difficult to implement in ISIS.

Realizing active replication through process grouus is immediate. Each computation to be
made fault tolerant is replicated to form a process group. All point-to-point communication is
replaced wita atomic broadcasts to the relevant groups to achieve input dissemination. Since
clients miy be replicated in addition to servers, each input-request may be received multiple times
by the members of the server group. Some deterministic function (e.g., majority, mean, median),
will have to be applied to the copies of the input to select the value to us*. This corresponds to the
output voting step of the active replication scheme. Even when the rplication level is dynamic,
the input extraction function can be implemented by the replicas interrogating the current group
Membership.

Process groups also form the basis for passive replication. Just before they start computing, all
members of a process group invoke the coordinator-cohort tool of ISIS which effectively selects
one member (the coordinator) to continue computing while the others (cohorts) remain inactive. If
ISIS detects the failure of the coordinator before its role comes to completion, it will nominate one
of the cohorts to the role of coordinator and resume its execution. While requests are disseminated



to group members using atomic broadcast as in active replication, there is no need for a voting
(input exmraction) function since only one output will ba produced (that of the coordinator).

Finally, the state transfer mechanism of ISIS provides a way to implement fault tolerance
through checkpointing. State transfers can be requested !ither to another process or to a dick file.
To the extent that a disk approximates stable storage, a failed computation can. be resumed from
the most recent state found in the file.

4 Parallel Computing in Distributed Systems with Paralex

Paralex is a programming environment for developing parallel applications and executing them on
a distributed system, typically a network of workstations. Programs are specified in a, graphical
notation and Paralex automatically handles distribution, communication, data rep•esentation, ar-
chitectural heterogeneity and fault tolerance. It consists of four logical components:, A graphics
editor for prangram specification, a compiler, an executor and a runtime support environment. These
components Qre integrated within a uaiform graphical programming environment. Here we give a
brief overview of Paralex. Deta.ils can be found in [5].

The programming paradigm supported by Paralex is a restricted form of dat& flow ri]. A
Paralex program is composed of nodes and links. Nodes correspond to computations and the links
indicate the flow of (typed) data. Thus, Paralex programs can be thought of as directed graphs (and
indeed are visualized as such on the screen) representing the data flow reations plus a collec iol of
ordinary code fragments to indicate the computations. The current m.ototype limits the structure
of the data flow graph to be acyclic.

The semantict associated with this graphical syntax obeys the so-called "strict enabling rule"
of dat&-driven computations in the sense that when all of the links incident at a node contain
values, the computation associated with the node starts execution transformiag the input data to
an output. The computation to be performed by the node must satisfy the "functional" paradigm
- multiple inputs, only one output with no side effects. The actual specification of the compute.
tion may be done using whatever appropriate notation is available induding standrd sequential
programming. languages, parallel programming notations (if the distributed system includes nodes
that are themnalves multiprocessors), executable binarycode or library functions for the relevant
architectures.

Unlike classical drta flow, the nodes of a Paralex program carry out significant computations.
This so-called large-gran data flow model [61 is a con'tequence of the ptperties of the underlying
distributed system where we seek 'to keep the communication overhead via a high-latency, low.
bandwidth network to reasonable levels.

There are many situations where the single output value produced by a node needs to be
communicated to multiple destlnationu as input so as to create paragel computation structures.
In Paralex, this is accomplished simply by drawing multiple output lins originating from s node
towards the various destinations. To economize on network bandwidth, Paralex introduces the
notŽon of filter nodes that allow data vlu., to be tixtracced on a pe:.dutluaton bosis before they
are tranmmitted to the next node. Conceptually, filters are defined and manipulated just as regular
nodes and their "computations" aie specified through prctrims. In practice, howaver, 1ll of the
data filtering computations are executed in the conmext of the single process that produced the data
rather than as separate procese, to minimize the system overhead.

Once the user has fully specified the Paralex program by drawing the data flow'graph and
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supplying the computations to be carried out by .he nodes, the program can be compiled. The first
pass of the Paralex compiler is actually a precompiler to generate ali of the ne:essary stubs to wrap
around the node computations to achieve data :eprem-.:tation independence, remote communication
and replica management for those nodes with fault toierance needs. Tse check-ing .ross links is
also performed in this phase. Currently, Para~lex generates all of the stub code as ordinary C. As
the next step, thp C compiler is invok'e4 to turn each node into an executable module.The Paralex compiler must also address the two aspects of heterogeneity: data representation

and instruction sets. Paralex' uses the ISIS tootlut as the infrastructure, to reatze a universal
data representation. All dat; that is passed from one node to an•ther during the computation
are encapsulated as ISIS messages. Heterogeneity with respect to instruction sets is handled by
invsking remote compilations on the machines of interest and storing multiple ex4°-ctables for the
nodes.

The Paralex executor launches the parallel computation on the distributed syatem respecting
all axrchitectural constraints. Details of how Piralex computation graphs are mapped onto the
hosts of a distributed system and how the execution is monitored anil controlled dynamically are
described in [4].

5 Replication in Paralex

Oue of the primary characteristic3 that distinguishes a distributed evstem from a special.purpose
super computer is the possioaiity of partial failures during computations. These failures may be
due to real hardware faults or, more probably, as a consequence of user actions such as rebooting
or turning off workstations. To render distributed systems suitable for long-running parallel com-
putations, automatic support for favlt tolerance must be provided. The Paralex rur-time system
contains the primitives necessary to support fault tolerance and dynamic load balancing.

As p art of the program defilaition, Facalex permits the aser to specify a fault tolerance level
for the computation graph. Paralex will generate all nf the necessary code such that when a graph
with fault tolerance k is executd, each of its nodes will be executed on k + 1 distinct hosts to
guarantee success for the computation despite up to k failures. Faiivres that are tolerated are
of the benign type for procesoors (i.e., all processes running on the processor. simply halt) and
communication components (i.e., mess~ges may be lost). There is no attempt to guard against
more malicious processor filures nor against failures of non-replicated components such as the
network interconnect.

Paralex uses passive rep.icatica u the basic fault tolerance technique. Given the application
domai (parallel sci-itiflc computing) and hardware p1atform (networks of workstations), Paralex
favors efficient use of computational teources over short recovery times in its choice ot a fault
tolerance mechanism. Passive repiication not only satisfies this objective, it provides a uniform
mechanism for dynamic load bv-A.cing through late binding of computations to hoots.

Pa.-alex uses the ISIS coorid,-for-cohort toolkit ta implement passive replication. Each node
of the computation that require. fault tolerance is instantiated as a process group consisting of
replicas for the node. One of the group members is called the cooadinator it, that it will actively
compute. The remaining memr. ers are cohora and remain inactive other than receiving broadcasts
addressed to the group. When 'SIS detecti the failure of the coordinator, it automatically promotes
one of the cchorts to the tole of cocrdina.)r.

Data flow from one node of a Paralex program to another results in a broadcast from the
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coordinator at the source group to the destination process group. Only the coordinator of the
destination node will compute with the data value while the cohorts simply buffer it in an input
queue associated with the link. When .the coordinator completes computing, it broadcasts the
results to the process groups at next level and signals the cohorts (through another intra-group
broadcast) so that they can. discard the buffered data item corresponding to the input for the
current invocation. Given that Paralex nodes implement pure functious and thus have no internal
state, recovery from a failure is trivial - the cohort that is nominated the new coordinator simply
starts computing with the data at the head of its input queues.

V A 

B

C

A C

Figure 1, Replication and Group Communication for Fault Tulerance.

Figure 1 illustrates some of these issues by considering a 3-node computation graph shown at'
the top as an example. The lower part of the figure shows the process group representation of
the nodes based on a fault tolerance specification of 2. Arrows indicate message arrivals with time
running down vertically., The gray process in each group denotes the current coordinator. Note
that in the cue of node A, the initial coordinator fails during its computation (indicated by the
X). The process 5roup is reformed and the right replica takes over as coordinator. At the end of its
execution, the coordinator performs two broadcasts. The first serves to communicate the results
of the computation to the process group implementing node C and the second is an internal group
broadcast. The cohorts use the message of this internal broadcast to conclude that. the current
buffered input will not be needed since the coordinator successfully computed with it. Note that
there is a small chance the coordinator will fail after broadcasting the results to the next node but
before haviig informed the cohorts. The result of this scenario would be multiple executions of
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a node with the same (logical) input. This is easily prevented by tagging each message with an
iteration number and ignoring any input messages with duplicate iteration numbers.

The execution depicted in Fig-are 1 may appear deceptively simple and orderly. In a distributed
system, other executions with inopportune node failures, message losses and event orderings may be

.equally possible. What simplifies the Paralex run-time system immensely is structuring it on top of
ISIS that guarantees "virtual synchrony" with respect to message delivery and other asyuchronous'
events such as failures and group membership changes. Paralex cooperates with ISIS toward this
goal by using a reliable broadcast coommunication primitive that respects causality [24].

6 Conclusions

We have argued that current large-scale parallel multiprocessors have properties not unlike dis-
tributed systems. With expected increases in the scale of parallel machines and increases in niet-
work bandwidth of distributed systems, the distinction between them is rapidly fading. This leads
us to conclude that future parallel applications will have to confront fault tolerance just az current
distributed systems have to. Furthermore, the same tools and techniques to render distributed
systems fault tolerant can be effectively used to render parallel applications fault tolerant.

Of the various paradigms developed for fault-tolerant distributed computing, passive replication
and checkpointing are probably the most appropriate for parallel computing. In fact, we have seen
that passive replication can be viewed as a special case of checkpointing. Modem distributed
programming toolkits include the necessary technologies for implementing a wide spectrum of fault
tolerance techniques.

While technologies such as ISIS are sufficient for fault-tolerant parallel computing, they still
require extensive distributed computing expertise to program with. Higher-level interfaces are
required if fault tolerance is to be used widely in parallel applications. Paralex represents one
such interface. By carefully selecting the programming constructs, fault tolerance can be added
automatically to parallel applications. Paralex is proof that this can be accomplished without
unreasonable penalties in performance.
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